Genel Görelilik Kuramı nedir?
Genel görelilik teorisi, 1915'te Albert Einstein tarafından yayımlanan, kütleçekimin geometrik teorisidir ve modern fizikte kütle çekiminin güncel açıklamasıdır. Genel görelilik, özel göreliliği ve Newton'un evrensel çekim yasasını genelleştirerek, yerçekimin uzay ve zamanın veya dört boyutlu uzay zamanın geometrik bir özelliği olarak birleşik bir tanımını sağlar. Özellikle uzayzaman eğriliğine maruz kalmış maddenin ve radyasyonun, enerjisi ve momentumuyla doğrudan ilişkilidir. Bu ilişki, kısmi bir diferansiyel denklemler sistemi olan Einstein alan denklemleriyle belirlenir.
Genel göreliliğin zamanın akışı, uzayın geometrisi, serbest düşme yapan cisimlerin hareketi, ışığın yayılımı gibi konulardaki öngörüleri, klasik fiziğin önermeleri ile belirgin farklılıklar gösterir. Kütleçekimsel zaman genişlemesi, kütleçekimsel merceklenme, ışığın kütleçekimsel kızıla kayması, kütleçekimsel zaman gecikmesi bu farklılıkların örnekleridir. Genel göreliliğin bugüne kadarki tüm önermeleri deney ve gözlemler ile doğrulanmıştır. Her ne kadar genel görelilik kütleçekimin tek göreli kuramı olmasa da, deneysel veri ile uyum sağlayan en basit teoridir. Buna rağmen, teorinin hala cevaplayamadığı sorular varlığını sürdürmektedir. Bunlara örnek olarak pioneer anomalisi, galaksilerin dönüş eğrisi ve genel görelilik ile kuantum mekaniğinin yasalarının hangi şekilde bağdaştırılarak, tamamlanmış kendi içinde tutarlı bir kuantum alan kuramı yaratılabileceğidir.
Einstein'ın teorisinin astrofiziğe kayda değer etkileri olmuştur; örneğin, büyük bir yıldızın ömrünün sonuna yaklaştığı bir zamanda içine çökerek karadelik oluşturduğuna işaret eder. Bazı astronomik cisimlerin yaydığı yoğun radyasyona karadeliklerin sebep olduğuna dair yeterli kanıt mevcuttur. Örneğin mikrokuasarlar, yıldız kaynaklı kara delikler ve etkin galaksi çekirdekleri, süper kütleli kara deliklerin varlıklarının bir sonucu olarak oluşurlar. Işığın kütleçekim nedeniyle bükülmesi, uzaktaki bir astronomik cismin gökyüzünde aynı anda birden fazla yerde görüntüsünün belirmesine sebep olan, kütleçekimsel merceklenme olarak adlandırılan bir duruma neden olur.
Genel görelilik aynı zamanda, bugüne kadar ancak dolaylı olarak gözlenmiş olan, kütleçekim dalgalarının da varlığını öngörmektedir. Buna dair doğrudan gözlemlerin yapılması LIGO ve NASA/ESA Laser Interferometer Space Antenna (Lazer girişimölçer uzay anteni) gibi projelerin amaçlarıdır. Tüm bunlara ek olarak genel görelilik, evrenin durmaksızın genişleyen modelinin bugünkü kozmolojik modelinin temelidir.
Genel görelilik, ışığın yolunun bir yıldızın yakınından geçerken uzay-zamanın eğriliğini izleyeceğini öngörür. Bu etki, yıldızların veya uzak kuasarların ışığının Güneş'ten geçerken saptığının gözlemlenmesiyle doğrulandı.
Bu ve ilgili tahminler, ışığın ışık benzeri veya boş jeodezik olarak adlandırılan şeyi takip ettiği gerçeğinden kaynaklanmaktadır (klasik fizikteki ışığın hareketine doğru olan düzgün çizgilerin bir genelleştirilmesi). Bu tür jeodezikler özel görelilikteki ışık hızı sabitinin genelleştirilmeleridir. Uygun uzay zaman modelleri (ya dış Schwarzschild çözümü ya da tek bir kütleden fazlası için Newton-sonrası açılımlar) açıklandığı üzere, yerçekiminin ışığın ortaya dağılmasındaki birçok etkileri. Serbest düşüşün evrenselliğini ışığa vererek ışığın bükülmesi türetebildiği halde, bu tür hesaplamalardan sonuçlanan ışının sapması sadece genel görelilik tarafından verilen değerin yarısıdır.
Kütleçekimsel zaman gecikmesi ışığın sapması ile yakından ilgili olduğu için kütleçekimsel bir alana doğru ışık sinyallerinin hareket etmesi alan yokluğundakilere göre daha uzun sürer.bu tahmin için çok fazla başarılı testler yapılmaktadır. parametre edilmiş post-Newtoncu biçimcilikte ışığın sapmasının ve kütleçekimsel zaman gecikmesinin ölçümleri kütleçekiminin uzayın geometrisi üzerindeki etkisini şifreleyen γ ile adlandırılan bir parametreyi belirler.
Işığın sapması
Genel görelilikte herhangi bir yörüngenin apsisi (yörüngesel hareket eden bir cismin sistemin kütlesinin merkezine en yakın olduğu yer) devinecektir. Einstein ilk olarak yörüngesinde hareket eden bir cisme bir test parçacığı gibi davranarak ve Newton limitini gösteren yaklaşık bir metrik kullanarak bu sonucu çıkardı. Urbain Le Verrier tarafından 1859 da keşfedilen Merkür gezegeninin anormal günberi değişiminin açık bir açıklamasını veren teorisi onun için kütleçekimsel alan denklemlerinin doğru halini tanımladığı önemli bir kanıttı. Tam tamına Schwarzschild metriği (uzay zamanı küresel bir kütle etrafında tanımlayan) ya da post-Newton biçimciliği kullanarak etki ayrıca türetebilir. Bu durum, bir cismin kütleçekiminin öz enerjine katkısı ve kütleçekiminin uzayın geometrisindeki etkisinden dolayıdır. Kesin devinim ölçümleri sağlayan bütün gezegenler (Merkür, Venüs ve Dünya) için göreli devinim gözlenmektedir.
Yörünge gecikmesi Genel göreliliğe göre, ikili sistem enerji kaybederken yerçekimsel dalgaları emecektir. Bu kayıp yüzünden iki yörüngesini izleyen iki cisim arasındaki mesafe azalır ve bu yüzden yörüngesel periyotları da azalır. Güneş sisteminde ya da sıradan çift yıldızlar için etki çok az gözlemlenebilir. İki yörüngesel hareket yapan nötron yıldızları yakın bir çift pulsar için değildir; pulsardan dünyadaki gözlemciler, yörüngesel periyodun ölçümlerini sağlayan ve yüksek doğruluğa sahip saat gibi görev yapabilen düzenli bir radyo bakliyatlarını alabilirler. Nötron yıldızları çok yoğun olduğu için enerjinin önemli bir miktarı kütleçekimsel radyasyon olarak salınır.
Yerçekimsel dalgaların salınması yüzünden yörüngesel periyotlarındaki azalmanın ilk gözlemi 1974'te keşfedilen PSR1913+16 çift pulsarı kullanarak Hulse ve Taylor tarafından yapıldı. 1993 Nobel Ödülünü kazandıkları yerçekimsel dalgaların ortaya çıkımı bir ilkti.
PSR1913+16 pulsarı için yörüngesel gecikme
Kütleçekimsel bir lensten üretilen aynı astronomik cismin dört resmi
4) Astrofizik uygulamaları:
Kütleçekimsel lens, kütleçekimi ile ışığın sapması astronomik olayın yeni bir sınıfının sorumludur. Eğer ağır bir cisim astronom ile uygun kütleli ve göreli mesafeli uzak hedef bir etkiler arasına yerleştirilir ise astronom hedefin birçok saptırılmış görüntülerini görecektir. Bu tür etkiler kütleçekimsel lens olarak bilinir. Görünüşe ve kütle dağılımına dayanarak iki ya da ikiden fazla görüntüleri olabilir, parlak çember Einstein’in çemberi olarak bilinir. En eski örneği 1979 yılında keşfedildi ve o zamandan beri yüz den fazla kütleçekimsel lensler gözlemlendi.
Kütleçekimsel lens gözlemsel astronomide gelişmektedir. Kara deliğin varlığını ve yayılımını göstermek için kullanılır. Lens bilgilerinin statiksel değerlendirmeleri galaksilerin yapısal evrimine değerli bir anlayış katar.
5) Kütleçekimsel dalga astronomisi:
Çift pulsarların gözlemleri kütleçekimsel dalgaların varlığı için güçlü dolaylı bir kanıt sağlar. Fakat kozmosun derinliklerinden bize ulaşan kütleçekimsel dalgalar direkt olarak algılanmamıştır. Görelilikle ilgilenen araştırmacıların temel amacı böyle bir buluştur. Birçok kütleçekimsel dalga buluşları denenmektedir ve en önemlisi ferrometrik detektörlerdir: GEO 600, LIGO, TAMA 300 ve VIRGO . Çeşitli zamanlama okları 10−9/10−6 Hertz frekansları aralığındaki kütleçekimsel dalgaları algılamak için milisaniye pulsarları kullanır. Avrupalı uzay detektörü NGO sürekli gelişme aşamasındadır. Kütleçekimsel dalgaların gözlemleri elektromanyetik spektrumdaki gözlemleri tamamlamaya garanti verir. Kara delikler ve nötron yıldızları, beyaz cüceler, süpernova patlamalarının türleri hakkında bilgi vermeleri beklenir.
Genel göreliliğin denklemlerine dayanan simülasyon, kütleçekimsel dalgalar salan bir kara delik oluşturmak için göçen bir yıldız
6) Karadelikler ve diğer yoğun cisimler:
Bir cismin kütlesinin yarıçapına oranı yeterince büyük olduğu zaman genel görelilik bir kara deliğin oluşumunun kaçabileceğini ileri sürer. Son zamanlarda kabul edilmiş 1.4 güneş kütleleri civarında nötron yıldızları, yıldızımsı kara delikler ve yıldız evrimi modelleri, büyük kütleli yıldızların gelişimi için final durum olduğu düşünülür. Genellikle bir galaksi merkezinde birkaç milyonluk güneş kütleye sahip bir süper kütleli kara deliğe sahiptir.
Astronomik olarak yoğun cisimlerin kütleçekimsel enerjiyi elektromanyetik radyasyona çeviren fevkalade mekaniği, onlara en önemli özelliğini katar. Gaz maddelerin ya da tozun yıldız ya da süper kütleli kara deliklere düşüşü göz alıcı bir şekilde ışıldayan bazı cisimler için sorumlu olduğu düşünülür. Özellikle yığılma, yaklaşık ışık hızı ile uzaya fırlatılmış yüksel enerjili parçacıkların ışınlarına odaklı göreli jetlere neden olabilir. Genel görelilik bütün bu olayları modellemede merkez bir rol oynar ve gözlemler teori ile tahmin edilen kara deliklerin varlıkları için güçlü bir kanıt sağlar. Kara delikler ayrıca kütleçekimsel dalgalar için olan araştırmalarda amaçlarında tebliğ içindedir. İkili kara deliği birleştirme Dünyadaki detektörlere ulaşan en güçlülerden bazı yerçekimsel dalga sinyallerini takip etmelidir ve birleşmeden direkt önceki safha, birleşme olaylarının mesafesini azaltmak için bir standart mum olarak kullanılabilir. Bu yüzden uzak mesafelerde kozmik genişlemenin araştırması olarak hizmet eder.
7) Kozmoloji:
Kozmolojinin geçerli modelleri kozmoloji sabitini Λ içeren Einstein’in alan denklemelerine dayanır çünkü kozmosun büyük ölçekli dinamiğine büyük etkisi vardır.
Bu ileri denklemlerin eş yönlü ve homojen çözümleri, Büyük Patlamadan daha evvel 14 milyon yıl süreyi aşkın gelişen bir evreni modellemeye fizikçiler için olanak sağlar. Astronomik gözlemlerle birkaç parametreler sağlandıktan sonra ilaveten gözlemlenen veriler modelleri test etmek için kullanılabilir.
Kozmolojik genişleme oranının astronomik gözlemleri, maddenin doğası gizemli kaldığı halde evrendeki toplam madde miktarının tahmin edilmesini sağlar. Bütün maddelerin yaklaşık %90 ı kara maddedir. Ana hatlarıyla bu yeni tür maddenin parçacık fiziği çatısında kabul edilmiş bir tanımı yoktur.